This event has ended. Visit the official site or create your own event on Sched.
Click here to return to main conference site. For a one page, printable overview of the schedule, see this.
Back To Schedule
Tuesday, June 28 • 5:03pm - 5:21pm
When will this machine fail?

Log in to save this to your schedule, view media, leave feedback and see who's attending!

In this talk, we demonstrate how to develop and deploy end-to-end machine learning solutions for predictive maintenance in manufacturing industry with R. For predictive maintenance, the following questions regarding when a machine fails are typically asked: what's the Remaining Useful Life (RUL) of an asset? Will an asset fail within a given time frame? Which time window will an asset likely fail? We formulate the above questions to regression, binary classification and multiclass classification problems respectively, and use a public aircraft engine data to demonstrate the complete modeling steps in R: data labeling, processing, feature engineering, model training and evaluation. R users are often challenged with productizing the models they built. After model development, we will show two ways of productization: 1) deploy with SQL server as stored procedures using the new R services; 2) deploy it by publishing as a web service restful API; Either approach would enable user to call the deployed scoring engine from any applications. The presentation will be followed by a live demo during the talk.

avatar for Thomas Petzoldt

Thomas Petzoldt

Senior Scientist, TU Dresden (Dresden University of Technology)
dynamic modelling, ecology, environmental statistics, aquatic ecosystems, antibiotic resistances, R packages: simecol, deSolve, FME, marelac, growthrates, shiny apps for teaching, object orientation


Xinwei Xue


Tuesday June 28, 2016 5:03pm - 5:21pm PDT